

A Less Biased Evaluation of Out-of-distribution Sample Detectors

Alireza Shafaei, Mark Schmidt, James Little

University of British Columbia

BMVC 2019

The Problem

In a typical supervised learning scenario, we *assume* the samples are drawn from a fixed distribution. What can go wrong in practice?

Chainlink Fence 31%

DenseNet 161 (2017)	Balance Beam 52%	Chainlink Fence 31%	Chest 37%	Tench 36%
SqueezeNet (2016)	Balance Beam 18%	Poncho 32%	Jean 30%	Suit 21%
ResNet 152 (2015)	Pacifier 33%	Chain Mail 29%	Dust Cover 52%	Sweatshirt 25%
VGG 19 (2014)	Dust Cover 44%	Window Screen 5%	Chest 11%	Sweatshirt 46%
AlexNet (2012)	Dust Cover 22%	Cardigan 12%	Theater Curtain 3%	Coho 37%

OOD Detectors detect the examples where the model cannot give reliable predictions.

- We show that current evaluation strategies over-estimate accuracy.
- We present a more practical evaluation framework.
- We show that the state-of-art methods are not reliable in practical scenarios.

OD-Test: A less biased evaluation strategy

- A binary classifier: *in-distribution* vs. *out-of-distribution* (OOD).
- We do not have access to OOD samples in practice.
- Supervised outlier detection: train a binary classifier on a fixed mixture of outlier and inlier datasets (two-dataset evaluation).
- Complex models can easily overfit to two-dataset classifications. Previous work uses a *fixed* mixture of *two low-dimensional* datasets. We show that it yields unreliably optimistic results (see top right).
- A more realistic setup with three datasets (**OD-Test**): Given an inlier dataset D_s and outlier datasets D_m , and D_t . Observe a clean D_s .

A two-dataset evaluation scheme can be too optimistic in identifying the best available method.

Mean test accuracy, averaging over D_s , D_m , D_t (n = 308/bar)

Mean Test Accuracy				
	0.9 0.7 0.6	1.0		
OpenMax/Res	— 58.44%	1-M		
PixelCNN++	60.74%	1-B		
OpenMax/VGG	— 62.31%	2-B		
1-VNNSVM	— 65.16%	8-B		
DeepEns./Res	— 65.68%	4-B		
8-VNNSVM	— 65.78%	8-		
2-VNNSVM	— 66.00%	PbThre		
4-VNNSVM	66.54%	4-		
BinClass/VGG	— 68.81%	DeepEr		
Log.SVM/Res	— 68.98%	2-		
BinClass/Res	69.06%	1-		
ScoreSVM/Res	69.88%	MC-I		

- Learn a binary reject function **r** on the mixture of D_s and D_m .
- Test the reject function on the mixture of D_s and D_t . 3. Repeat over different outlier datasets to obtain a reliable estimate of performance on D_s .

Experimental Setup

Methods.

- Uncertainty: MC-Dropout [1], DeepEnsemble [2].
- Density estimation: PixelCNN++ [3].
- Open-set recognition: OpenMax [4].
- **Deep learning** literature: ODIN [5], Probability Threshold.
- Outlier/Anomaly detection: K-NN, Reconstruction-based.

Mean test accuracy per source dataset D_s (n = 54/bar)

A Short Summary of Results

- A two-dataset evaluation can make us too optimistic.
- Simpler/cheaper data mining approaches work as well as the

• Other: K-NN on Autoencoder and VAE latent representations, SVM on logits, K-way logistic regression loss, direct binary classification. Models.

• VGG-16 • Resnet-50

Datasets.

FashionMNIST • NotMNIST • CIFAR10 • CIFAR100 • MNIST

• Tinylmagenet • Uniform Noise • Gaussian Noise • STL10

recently proposed methods in low-dimensional settings.

- None of the methods work well on high-dimensional data.
- VGG-16 is better than Resnet-50 for this task, even though the Resnet model has a higher image classification accuracy. • For a more reliable assessment, future work should use **OD-test** instead of two-dataset evaluations.

Selected References

[1] Y. Gal and Z. Ghahramani, "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning," in ICML, 2016. [2] B. Lakshminarayanan, A. Pritzel, and C. Blundell, "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles," in NIPS, 2017. [3] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, "Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications," ICLR, 2017.

[4] A. Bendale and T. E. Boult, "Towards Open Set Deep Networks," in CVPR, 2016.

[5] S. Liang, Y. Li, and R. Srikant, "Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks," ICLR, 2018.

Replicate the results on GitHub https://github.com/ashafaei/OD-test